Predicting the Survival Time for Bladder Cancer Using an Additive Hazards Model in Microarray Data
نویسندگان
چکیده
BACKGROUND One substantial part of microarray studies is to predict patients' survival based on their gene expression profile. Variable selection techniques are powerful tools to handle high dimensionality in analysis of microarray data. However, these techniques have not been investigated in competing risks setting. This study aimed to investigate the performance of four sparse variable selection methods in estimating the survival time. METHODS The data included 1381 gene expression measurements and clinical information from 301 patients with bladder cancer operated in the years 1987 to 2000 in hospitals in Denmark, Sweden, Spain, France, and England. Four methods of the least absolute shrinkage and selection operator, smoothly clipped absolute deviation, the smooth integration of counting and absolute deviation and elastic net were utilized for simultaneous variable selection and estimation under an additive hazards model. The criteria of area under ROC curve, Brier score and c-index were used to compare the methods. RESULTS The median follow-up time for all patients was 47 months. The elastic net approach was indicated to outperform other methods. The elastic net had the lowest integrated Brier score (0.137±0.07) and the greatest median of the over-time AUC and C-index (0.803±0.06 and 0.779±0.13, respectively). Five out of 19 selected genes by the elastic net were significant (P<0.05) under an additive hazards model. It was indicated that the expression of RTN4, SON, IGF1R and CDC20 decrease the survival time, while the expression of SMARCAD1 increase it. CONCLUSION The elastic net had higher capability than the other methods for the prediction of survival time in patients with bladder cancer in the presence of competing risks base on additive hazards model.
منابع مشابه
استفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملPredicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System
Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction mod...
متن کاملبرآورد خطای پیش بینی برای وضعیت بقا و کاربرد آن درتحلیل بقای بیماران مبتلا به سرطان روده بزرگ
Introduction: Colorectal cancer is one of the most widespread and killer among cancers. It is important that we predict what status people have in the future. The purpose of this study was comparison of the Cox model and Kaplan-Meier curve with IBS and also identifying the factors about predicted survival time of patients with colon cancer. Materials & Methods: This paper is related to colore...
متن کاملApplying Additive Hazards Models for Analyzing Survival in Patients with Colorectal Cancer in Fars Province, Southern Iran
Introduction: Colorectal cancer (CRC) is a commonly fatal cancer that ranks as third worldwide and third and the fifth in Iranian women and men, respectively. There are several methods for analyzing time to event data. Additive hazards regression models take priority over the popular Cox proportional hazards model if the absolute hazard (risk) change instead of hazard ratio is of primary concer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2016